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\X | A METHOD OF ANALYSIS FOR LENS AND MIRROR SYSTEMS
) ' ¥*
.;w . # by

R. J. Davis!, S. E. Strom2, and K. M. Strom3 -Jawrgéyrroy é:__é
Cereaid oo Spoce Seierce Jon30,1067 p 1~10 (See Ke3-84093 24)

The Smithsonian Astrophysical Observatory is participating in the Orbiting Astronomical
Observatories program of the National Aeronautics and Space Administration to develop an optical-
electronic system that will combine wide-band television with photometry and slitless spectroscopy
in making a survey of the sky between 1000 and 3000 angstroms.

The system is basically a television telescope. The detector will be a modification of a
Westinghouse ebicon tube for use in the ultraviolet. A photoemissive substance is deposited on the
inside of the faceplate, which must be a lens transparent to the ultraviolet wavelength being studied.
Photoelectrons from this surface are accelerated through 15 or 20 kilovolts and imaged upon the
target electrode, in which the electron bombardment induces conductivity. The electroconductive
image can then be read off the target by the usual vidicon technique. The resolution, which is
determined by the limitations of beam-scanning techniques, is at present limited to about 100
microns throughout an area of 2.5 centimeters square on the photocathode.

The design of such a telescope involves the evaluation of various optical designs. It must be
mechanically simple if it is to operate properly after being subjected to the rocket and space environ-
ment. It must consist entirely of reflection optics, except for the television faceplate itself and
possibly a small optical filter in front of it.

We have developed a ray-tracing program for the IBM-704 electronic computer to evaluate
various systems that have been proposed to meet our requirements. Because these techniques have
more general applicability, we are reporting them here for the benefit of others who may wish to
use them.,

1Astmphysic:ist, Project Celescope, Smithsonian Astrophysical Observatory.
2Computex-, Project Celescope, Smithsonian Astrophysical Observatory.

3Massad1usetts Institute of Technology (on leave of absence).
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General Method

The general vector equation for refraction and reflection at an optical surface is:
IxN=nRxN. (1)

The following conventions hold:

L is the unit vector along the incident ray; I = Aj + Bj + Ck, where A, B, and
C are the direction cosines of the incident ray. This vector must be normalized, i.e.,
A2+B24+c2=1,

N is the vector along the normal to the optical surface under consideration; this
ray need not be normalized since it appears on both sides of the equation, N = P,i
+ Pyj_ + Pk, where Py, P, and P, are the partial derivatives of the function represent-
ing the optical surface EP{x, Y:?) = 0] .

n is the ratio of the index of refraction of the second medium to that of the
first; for reflection, n = -1,

R is a unit vector along the reflected (or refracted) ray; R = Ri + Sj + Tk,
where R, S, and T are the direction cosines of the ray. -

The equation to be solved is then:

41 k i 4k
Py Py P, P, Py P,
Or, when we equate the components, the equation takes the form:
BP, - CPy = n(SP, - TPy)
AP, - CPy = n(RP, - TPy) (3)
.A.l"’y - BPx = n(l'(l"y - SPy)

Since equations (3) are not linearly independent, the other condition necessary both physically and
mathematically to obtain a unique solution is:

R2+s2+T2=1, (4)
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X - X - -
oY Yo 1" %, (8)
A B C

where (X Yor20) is any point on the incident ray,

We then evaluate the partial derivatives of the surface at the points of intersection, and carry
out the solution for the values of R, S, and T that correspond to each set of A, B, and C. These
values of R, S, and T can then be used as the direction cosines of the rays incident upon a second
surface. Thus, the R, S, and T that have been calculated become analogous to the original A, B,
and C. The rays are traced through the system in this manner until their intersections with the final
optical focal surface have been calculated. Knowing these intersections, we can calculate both the
size and the shape of the image if the incident rays are appropriately chosen and if their number is
great enough.

All signs of the square roots involved in this solution are determined by the physical solution
desired.

The Case of the Off-axis Paraboloid

One of the optical systems we have considered in our design of telescopes to be used in the
Orbiting Astronomical Observatories program is the off-axis paraboloid. Such an instrument is
illustrated in Figure 3.

The equation of the surface to be considered here is:

x2 + y2 = 4fz, (9)
where { is the focal length of the paraboloid. The incident rays are given by:

J=(siny cosa)i + (siny sina)i+(cos-y)l'<‘, (10)

where y is the angle the ray makes with the z-axis, and a is the angle the ray makes with the x-axis,
both angles being measured according to the conventions in Figure 4. These components satisfy the
normalization condition. The equation of the normal is:

N=2x+ 2yf - 4. (11)
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The optical system is set up in a rectangular coordinate system (x, y,z), with the first surface
placed at the origin, Further surfaces are first written in convenient rectangular coordinate systems
(x",y",2"). This is shown in Figure 1. In order to obtain a solution, we use the following transforma-
tion equations:

x'' =X - xq

~<.
"

Yy -v1 (5

' =z -y

for translation, where (x4,yq,2y) is the position of the surface with respect to the origin of the
coordinate system (x, y, z); the matrix equation:

x" cos a4 cos By cosyq ff x'
y'¢ = | cosap cos 82 cosys iy (6)
" cos a3 cos By cosys|lz

is used for rotation. The angle convention is given in equations (7):

cosa, = cos(LX"OX')

cos By = cos (LX"OY')

Cosy, = cos (£LX"0Z") (7
cosap = cos (LY"OX')

etc,

Figure 2 gives the definitions of the angles on the right-hand side of equations (7). We then substitute
the transformation equations (5) and (6) into the equations of the surfaces P(x", y",2"). Thus we obtain
the equations of the surfaces with respect to the origin of our original coordinate system (x,y, z).

Since the above matrix is orthogonal, the inverse transformations are easily obtained, the
inverse matrix being equal to the transform of the matrix. Primes are used to represent translated
coordinate systems, and double primes to represent translated and rotated coordinate systems.

In order to trace a ray through an optical system, we must have, for the surfaces involved,
continuous equations (although the functions need not be single-valued) and continuous partial deri-
vatives, This condition should not eliminate any optical systems that we may wish to study, We
determine the equations of the original incident rays by the physical situation desired; e.g., the
angles of incidence of the rays. Then we obtain the intersections of these rays with the first optical

surface by solving equation (8), the parametric equations of the incident rays, simultaneously with
the equation of the surface:
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The relative index of refraction, n, is -1. The vector equation to be solved is then:

i i L E R
siny cosa sinysina cosy| = |2x 2y -4Af) , (12)
2x 2y -4 R S T

where x and y are the points of intersection of the rays with the mirror. Since our system is a telescope,
we can arbitrarily pick the points on the mirror to represent, for example, the extreme rays in the
system, Equation 12 gives:

2fsiny sina + ycosy = (2fS + yT) (13)
or

S = _Y(T + cosy) + 2fsiny sina

P 3 (13a)
2fsiny cosa + xcosy = -(2fR + xT) (14)

or
R=_x('l'+co:y)+2iﬁnycosa; (14a)

2f

and

T2=1 - Lz (xz + 2T + cosy)? + 4% siny + 4fsiny (T + cosy)(x cosa + ysin@ (15)
4f

or

12y » X2+ ¥%\, reosy (x® + y?) siny (xcosa + ysing)
412 2f2 f

(15q)
+£1_co-_ux_f=°_=_u.y_zin_¢) + eazy(L*zﬁ+9 =0.
4
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After obtaining T from this equation, we can readily solve for R and S. The reflected ray is
then determined by its direction cosines and the point (x, y,2) on the mirror at which it was reflected.

For our own purposes, we place the faceplate of our television camera at the focus of this
system. We will consider the reflected rays from the mirror to be the rays incident upon the front
surface of the faceplate. The case of a double concave faceplate will be considered. Both surfaces
of the faceplate are spherical, and its thickness at the center is t.

In this coordinate system, (x",y",z"), the equation of the first surface is:

x4 y"2 + 22 = Rf . (16)
The equation of the second surface is:
2+ yn2 4 [ - (R + Ry + ]2 = RS, (17
We first translate these equations along the z-axis to a point, z. Equations (16) and (17) then become:
x2 4 y'2 + (2" - z},)2 = Rf R (16a)
x2 4 y2 4 [z' -(z, + Ry + Ry + t)]2 = R% . (17a)

Since the section of the paraboloid under consideration is not symmetrical with respect to the
z-axis, we must also rotate the coordinate system at an angle 8 in order to obtain the best focus.
This angle is found by rotating the system back and forth in finite steps about an appropriately chosen
initial angle until the best "spot size" is obtained over the entire field. The rotation is performed
about the x-axis; therefore, x = x'. The resulting matrix equation is:

x! 1 0 o] X
y'p =10 cos & sind|{yd, (18)
7' 0 -$ind cosB| |z

where the unprimed coordinates are in the system in which the equation of the paraboloid was written,

The final equations of the faceplate surface are:
x2+(yc035+zsin8)2+(zcos8-ysinS-z°)2=Rf, (16b)

x2+(yco§8+zsin5)2+[zcos ®-ysind -(zo + Ry +R2+t)2=R%; (17b)
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or

x2+y2+zz+z§+21°(ysin5-zc055)=Rf, (16¢)
x2+y2+12+k2+2k(ysin5-zcos&)=R§, (170)

where

k=25+Ry + Ry +t.

The intersections of the ray reflected from the mirror and the first surface of the faceplate are
obtained, and then the direction cosines of the reflected ray are found. The index of refraction of the
faceplate must be used in this solution. The equations of the rays incident upon the second surface can
be obtained from the direction cosines, and the intersections of the rays with the first surface. The
final solution of the problem is the determination of the intersections of the rays with the second surface
of the faceplate, since this represents physically the photoemissive surface of an ebicon television image
tube.

Several square roots are involved in this solution. We chose their signs to give the physically
correct answer; i, e., intersections with the equation within the range of values that actually represents
the optical surface,

We have employed this method with the IBM-704 at the Computations and Analysis Division
of the Smithsonian Astrophysical Observatory. For each angle of incidence we traced five rays through
the system, one ray striking the center of the mirror and four at the edges, 90° apart (fig. 5). The
computed spots were compared with the photographs taken with a plane image surface in our optics
laboratory, We found that these rays gave both the size and shape of the image quite accurately. With
a greater number of rays, we can determine an approximate intensity distribution within the image.
After determining the angle O, we found the best focus by moving the faceplate both toward and away
from the mirror until the best possible spot size was obtained over the entire field,

We have used this same method to evaluate a Schwarzschild telescope system, a two-mirror
system in which both reflecting surfaces are aspheric. We have also considered a spherical mirror used
at grazing incidence, and a similar mirror for which a cubic correction factor had been introduced.
These mirrors used at grazing incidence form the basic components of an x-ray telescope or micro-
scope system,
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FIGURE 1. --Coordinate systems for (a set of ) two optical surfaces.

FIGURE 2, -- Geometrical illustration of the

angles defined in equation (7).
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FIGURE 3, --Use of the off-axis parabaloid for a
television telescope.

I

FIGURE 4. --Direction conventions for rotation of
coordinate system.
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FIGURE 5. -- Nomenclature for numbering of rays,
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A DETERMINATION OF THE ELLIPTICITY OF THE EARTH'S EQUATOR

FROM THE MOTION OF TWO SATELLITES

by

Imre G. Lzsak! ?N"l'f ’7*‘/""

Abstract -~ The effect of the most important longitude -dependent term of the
geopotential on the motion of artificial satellites is expressed by simple formulas.
Its numerical coefficient £ can be interpreted as the ellipticity of the earth's
equator, the phase constant Ay gives the geographical longitude of the semi-
major axis, Based on photoreduced Baker-Nunn observations of the satellites
1959 Q.1 and 1959 Eta the values of these constants were determined to be

B=(3.20 +.29) x 107 and Ay = -33%5 4 953 .

Introduction .

The primary mission of Satellite 1959 a1 (Vanguard II) was to scan the earth's cloud cover,
and that of 1959 Eta (Vanguard III) to measure the earth's magnetic field. These experiments, however,
could be conducted only for a limited period, as the transmitter of Vanguard II ceased operating 27
days after launching, and that of Vanguard Il 85 days after launching. Since then the Smithsonian
Astrophysical Observatory has had the responsibility for tracking both objects, and has obtained many
thousands of optical observations of them by means of the Baker-Nunn camera stations and the voluntary
Moonwatch teams. Because of their high quality, these observations became very valuable for different
research projects, such as the study of the upper atmosphere, the determination of the earth's gravita-
tional field, and other investigations now under way. For our present purpose, the determination of the
coefficient and phase of the first longitude-dependent spherical harmonic in the geopotential, only the
most accurate observations can be used, These are without question the positions obtained by the Photo-
reduction Section, at the Cambridge headquarters of the Smithsonian Astrophysical Observatory, from the
Baker-Nunn photographs. For simplicity, we call these positions photoreduced observations as opposed
to the field-reduced observations; the latter are the less accurate positions determined in the field, i.e., -
at any one of the 12 Baker-Nunn camera stations, immediately after a pass of the satellite over the station.

1Astrcmc:mer, Smithsonian Astrophysical Observatory
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The Geometrical Interpretation of the Geopotential

For easy reference we collect first some well known formulas related to the development of
the geopotential of a rotating rigid body into a series of spherical harmonics, (According to the conven-
tion in theoretical physics, we are dealing here with a force function, which is the negative of potential
energy.)

Let X, Y, Z be the coordinate system of the principal axes of inertia with the origin at the
center of mass; and A £B SC the moments of inertia about these axes. Then the gravitational potential
of the body can be written in the form

u=B[1+AXB*C -3y o1}, ‘1)
r Zmerz r

where b= fm, is the product of the constant of gravitation and the mass of the earth,
r2=x2+Y2+22;
and
1=1 (ax? + BY? + c22
=3 ( + BY< + CZ9)
r
is the moment of inertia about the line joining the center of mass to the point considered. Expression (1)

is sometimes referred to as MacCullagh's formula (Jeffreys, 1959).

Let us introduce spherical harmonics in the usual way by the relations

2
zz-ﬁ;_._Yz=r2 Pz(sin§)=%(3sin2§-l) , (2)

¥x% - v2) = r2 P(Z?) (sin &) cos2A = 312 cos?® cos2ht (3)

where & denotes the latitude; and A the longitude reckoned from the principal axis X;
PZ( sin & ) is a Legendre polynomial; and

cos? & d2py(sin §)

(2) (gin 3y =
P (sin @) =
2 (dsin@)2
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The polynomial (2) is called a zonal solid spherical harmonic; the polynomial (3), on the other hand,
is called a sectorial solid spherical harmonic. Using the notations

Jp= T B ’(i)=A -3
Zmene 4meae
we can write
U= E{l -3 (°=)2 P, (sin 3) - (?) “e)z bl‘z)(sin 2) cos zA} (4
Tr 2\7/ "2 2(r 2 :

Because all gravity measurements are made with respect to a frame rotating with the earth,

the geopotential Y is the sum of the gravitational potential U and the potential of the centrifugal force;
that is,

2
Y=u+iz'(x2+vz), ' (5)

where § is the angular velocity of the earth's rotation.

To express the constants J; and 1(2) by geometrical quantities related to the shape of the
earth, and by a quantity related to {, we assum® that the surface of the earth is very nearly an equi-
potential surface of the geopotential ¥. This hypothesis of hydrostatic equilibrium has certain cosmo-
gonical consequences. It must be kept in mind, however, that even in the case of the earth, it gives
only a good approximation to the real situation; and in the case of the moon it fails completely. Be
that as it may, we suppose that

¥= const | (6)

on the surface of @ triaxial ellipsoid, which deviates but slightly from a sphere; that surface will be
considered as the mean surface of the earth, In the equation

xz 2 2
Y Z
+ =
e rE g
of this geoid, we put
be = de(l - B)x Ce = 9 Q-v) (8)
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and call 8 the ellipticity of the earth's equator, and y the oblateness of the earth, Also, we introduce

the small dimensionless quantity
9

a=%{,

which is the ratio of the squares of the earth’s angular velocity and the Keplerian mean motion of a

fictitious satellite with semimajor axis a = a,-
We will need the expansion of a,/r on the surface of the geoid in spherical harmonics.

From equations (7) and (8) it follows that to the first arder in the small quantities B and y

2 2
Y
(1-2y) fz' +( -2 +2) = +28=1-2;
e

®

hence

But as a consequence of equations (2) and (3) we have

X+ ¥ = i’;_{l-rzum@)} ,

2 -
Y2 = %{2 - 2P,(sin &) - P(g)(sin ) cos 21\}, (10

so that expressed in spherical harmonics
(1

Ze=(1+B*7)+2r -8 py(sind) - B P(®) (sind) cos 24 .
T 3 3 6 2

Then a comparison of equations (4), (5), (9), and (11) shows that on the surface of the geoid

]2) P{sin $) - (% + ]‘:)) P(g)(sin $) cos ZA},

-t {(ome) - (e

again to the first order in the small quantities a, B, y . Because the development of a function of the
and A into a series of spherical surface harmonics is unique, the condition (6) amounts to

angles %
the validity of the relations
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2
j=2rclBra) oy ](2)=-% (12)

2
among the coefficients Jz and J(z) on the one hand, and the constants g, B, y on the other,

Geodesists are usually concemed with the gravity, g, which is the absolute value of the
gradient v ¥ . Neglecting quantities of the second order in a, B, and Y, one first obtains

2

o= 18 e )

a \4
-312({-) P, (sin &)

ad4 (2y 2 !
_3](?(ﬁ P(z)(st) cos ZA -3-(%;)[1-?2(’1“@)]] .

On the surface of the earth, this expression becomes

- 2
g=ge{l+WMz§+%wazA} (13)

with

9e=£2(l‘3a——l-:-2) s

when use is made of relations (12)

The value of the constant g can be deterr_xyned with high accuracy. A sidereal day
equals 86164.10 seconds; therefore, § = 7.292115 x 10™ sec-l. Then, adopting from O'Keefe,
Eckels and Squires (1959) the value

4 = 3.98618 x 10°km > sec—2

and the value

a, = 6.378388 x 103km

-15-



of the international ellipsoid, we obtain from relation (9)

a = 3.46165 x 03,

The most accurate value of the coefficient J5 is probably that of Kozai (1961), who has
found that

J, = (1.08219 + .00002) x 10-3 , (14)

To take full advantage of his determinationk accuracy, we must consider the second-order expression of
Jo, instead of the relation given by the first equation in (12). Such an expression can be derived by a
straight-forward, though more laborious extension of the argument that led to relations (12). The result is

_31-(a+8)_]_2+_3g_ (15)
Jp = 3 3 7

Here in the second-order terms it is sufficient to use for the constant y an approximate value,

1/298.3 = 3,352 x 10'3, which together with the above value of @ gives

2- -
j = ={a*8) 005 1076,
2 3

The determination of the oblateness y from the coefficient J, is sensibly affected by the value of the
ellipticity B, as shown in the following table:

when 8 then y

o . 3.35227 x 10~ = 1/298,305
2 x 107 3,36227 x 10-3 = 1/297,418
4x 107 3,37227 x 10-3 = 1/296,536
6 x 10-3 3,38227 x 1073 = 1/295.659 .

The data on the ellipticity of the equator are rather contradictory in the literature. They were determined
by analyzing the measures of gravity over extended areas of the earth, and seem to be influenced signifi-

cantly by the distribution of the observational material, For instance, from the treatise of Heiskanen and
Meinesz (1958) we list these datas

8 Ax
Helmert, 1915 3.6 x 10~ -17°
Heiskanen, 1924 5.4 x 10:2 +18°
Heiskanen, 1928 3.8x10 0°
Niskanen, 1945 4,6 x 1073 - 4°
Uotila, 1957 2.1 x 107 - 6°
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where A X is the geographic longitude of the direction of the principal axis X, so that for any longitude
A we have

A = )\ - hx .
Accarding to Jeffreys (1959), however,
-5 o
B=(25+.9)x10 , A=0°,
In his textbook on celestial mechanics, Subbotin (1949) adopted the value
= 1/30000 = 3,3 x 107 .

In his detniled study, Jongolovich (1957) derives the equivalent of the values

B=3.57x10", Ay = -797.

From a recent paper by Kaula (1959 ) one can infer the values

B=3,67 x105, Ay = -28.

The Effect of the Ellipticity of the Earth's Equator on the Motion of Satellites,

Several investigators have pointed out that the ellipticity of the earth's equator might have
a detectable effect on the motion of artificial satellites, and therefore a careful analysis of accurate
satellite observations could lend itself to a better determination of the constants 8 and Kx « In this
connection let us refer to the papers by O'Keefe and Batchlor (1957 ); Robe (1959 ); Cook (1960 );
Sehnal (1960 ); and Musen (1960).

To derive the perturbations caused by the presence of the sectorial harmonic in question,
we can confine ourselves to a very simple theory, The disturbing function, which is

R=81 (2)3 cos 28 cos 24,
2 ap \r

must first be transformed into a function of the orbital elementsa orn, e, I, M, W, and Q of the
satellite, Let

v = the true anomaly,

u = v +, the argument of latitude,

w= the projection of u on the equator, that is the longitude of the satellite reckoned
from the ascending node of its orbit,

nu
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) g and 8. = the mean sidereal time at Greenwich and at the intersection of the principal

X axis X with the surface of the earth,

Note that
A=w -84 -Q) ,
and
Xx = ex - eG .
The angles &, w are related to the angles I, u by the formulas

cos Q COSW = Cosu

and

cos § sinw = cosl sinu ,

in accordance with splierical trigonometry., These equations can be written in the complex form

cos ® exp(iw) = cosu + i coslsinu = cosziiexp(iu) + sinz.liexp(-iu) ,

which immediately yields

cos ® exp (iA) = cosz%exp i(u - 6y +Qﬂ + sinz%exp -iu + & -Q;] .

But

cos 28 cos2/ = Re {[cos  exp(if )]2 } ’

so that introducing the abbreviations

=

c=cosl, s=sinl, n

~18~




we obtain the disturbing function in the form

2 3
R= -B% nz(c—l) {achSZ(ex -y +(Q+ c)zcos2(u -Bx +0) +(1 - c)zcos2(u +6g -Q) } .
r

General formulas for the disturbing function of any tesseral harmonic can be found in a paper by Groves (1960).

In our problem it is not necessary to carry out the development of this function into a Fourier
series in terms of the mean anomaly M, because the contribution of the short-periodic terms to the per-
turbations turns out to be negligibly small, As the Fourier series of the functions

(g- )3 cos 2v and (%)3 sin 2v
do not contain constant terms, and the constant term

o @ w1 -ey V2,

the "long-periodic" part of R becomes simply

R= (g.) ai nz(l -ez '3/232 cocaex -8y .

(16)
The perturbations caused by the oblateness of the earth concern us here only to the extent that{Q is not
constant, but rather a linear function of time:
Q=0Q, +Qq(t-t,),
so that
& -Q=6y -0, + & -Q1) (t-t5) . (17)

Substituting function (16) into the differential equations of the orbital elements (see, for
example, Moulton (1959)) and integrating with respect to time, we obtain at once

=19~




2 2
nae (3 - 5¢7)
dw=p — ., sin2(8x -Q) ,
8 (9 -Qy)p
2
&Q 5—:&2—— in2( Q)
= sin - k)
ndg $ (18)
01 = B ————5— cos2(8x -Q) ,
48y -Qy) p°
3m2(1 _32)1/2'2
e
M = S.‘an(ex -Q).
8(6y -Qq)p2

The semimajor axis a and the eccentricity e do not undergo long-periodic perturbations due to the
ellipticity of the equator, The question now is how to use these formulas for the determination of the
constant 8, and whether the accuracy of the observations made with the Baker-Nunn cameras is
sufficient for such a determination,

The Computation of the Constants 8 and Ay

In the Differential Orbit Improvement Program of the Smithsonian Astrophysical Observatory
developed for the IBM-704 computer by G, Veis and Ch, H. Moore, the orbital elements®w, 2, I, ¢, M
can be represented as polynomials up to the 7th degree, plus sine-terms and exponential functions of the
time t. As many as 23 of the data figuring in such a representation can be varied in an iterative least—
squares solution, but we usually limit ourselves to much less unknown in order to obtain meaningful results.
It takes some experience to decide properly which quantities should be varied in a particular application,

The numerical material for the present investigation was obtained in December, 1960 by
several consecutive runs of this program, as applied to 187 photoreduced Baker-Nunn observations of
Satellite 1959 g 1 covering the interval April 6 through 25, 1960; and to 216 observations of Satellite
1959 Eta covering the interval May 8 through 27, 1960, The use of two satellites is not a theoretical
necessity, but a precautionary measure in order to give two independent determinations of the constants
in question. While it is not possible here to furnish all the details of these orbit computations, their
important features can be summarized as follows. Because the phase at which the trigonometric terms (18)
are "observed" at a particular station varies only slightly from day to day, it is desirable to use a long
interval of time for the computation of the constants 8 and }‘X' However, even in the case of such

relatively high orbiting satellites as 1959 @1 and 1959 Eta, the effect of the air drag cannot be described

with sufficient accuracy in too long an interval of time by simple polynomial expressions. As a compromise,
some numerical experimentation led to the 20-day intervals noted above, with third-degree polynomials

in the mean anomaly M. The best possible polynomial representation of all the orbital elements was
determined, treatingW and{l as polynomials of the second degree, I and e as polynomials of the first
degree, and M as a polynomial of the third degree, This means that the long-range direct and indirect
effects of the air drag, of the radiation pressure, of secular and long-~periodic perturbations due to the

even and odd zonal harmonics in the earth's gravitational potential, and of luni-solar perturbations were
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treated in an empirical way, Analytical expressions for the first-order short-periodic perturbations due
to the oblateness of the earth are incorporated in the computer program, The coefficients of these

polynomials were improved by including the trigonometric terms (18) into the orbital elements with
the constants

5

£=38x10 and Ay =0°

of Heiskanen. In several consecutive runs these constants were then treated as unknowns only in the right
ascension of the node (1, because one would expect no short-periodic air drag effects in this orbital
element, and because- the amplitude of 600 turned out to be the biggest one. The improved values of

8 and A y were substituted into 8@, 800, 81, M, and then the computation of these constants was
repeated until the new values agreed with the old ones within their standard errors,

Here are the relevant results of these computations

Satellite
1959 a1 1959 Eta
t, April 16,0, 1960 May 19.0, 1960
8o 20471383 23696646
8, 1.002738 rev/day
Q, 13870499 15591312
Q, 3951067/ day -3927567/day
n 11,463937 rev/day 11.069014 rev/day
a 1.302343 a, 1.333153 a,
e 0.1646379 0.1891083
q = a(l-e)-a, 561 km 517 lon
1 32%8796 3303569 .
Consequently, expressions (18) become
w -8 x 0.4641 sin2(8y -0) -B x 0.40415in2(8y -Q)
6Q B x 1.4808 sin2(8y -Q2) B x 1.3824 5sin2(8y -Q)
61 B x 0,9572 cos2(8y -0) 8 x 0.9100 cos2(8y -Q)
oM B x 0.7688 3sin2(6y -N) B x 0.7370 sin 2(8y -02) .
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In the course of the trigonometric least-squares fit to the observations, the IBM-704 electronic computer
actually obtained the amplitude of 8 and twice the phase angle O%6 -Cg = Ax +(8go -Q15). From
these data we immediately obtain

B (3.47 + . 28) x 107 (2.88 + .32) x 1075

Ay -33% + 199 3203 + 391
The agreement between the two sets of data seems reasonable; taking the weighted mean values, we

obtain

B=(3.21+.29) x 1075

Ax = -33715 + 953 .,

This numerical value of the ellipticity gives the perturbation 8w, . . . expressed in radians, For the
use of other angular units we note that

-6

8=5.11x10"6rev = 1784 x 1073 = 6v62.

According to definition (8) of the quantity B, the difference between the axes a, and b is205m; asa
consequence of equation (15), the oblateness becomes

y = 3.36832 x 10~ = 1/296.884 .

Needless to say, the above dstermination is far from being a final one, It will be im-
proved as soon as more accurate coordindates of the Baker-Nunn camera stations are available,
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EFFECTS OF SOLAR RADIATION PRESSURE ON THE MOTION
OF AN ARTIFICIAL SATELLITE

by

-

Yoshihide Kozail 28 .3“'

The effects of solar radiation pressure on the motion of an artificial satellite have been studied
by several authors (Musen, 1960; Parkinson, Jones, and Shapiro, 1960). As they predicted, the orbit
of Satellite 1960 L1 (Echo I) has been greatly affected by the solar radiation pressure (Shapiro and
Jones, 1960). And even for Satellite 1958 B2 (Vanguard I), which is of moderate size, Musen,
Bryant, and Bailie (1960) found that the discrepancy between the observed and computed values of
perigee height could be explained by the solar radiation effect.

When the author (Kozai, 1959; 1961) derived several constants of the earth's gravitational poten-
tial from the motion of artificial satellites, he did not take this effect into consideration, Although
the effect is very small for the average satellite, it must be considered in the future in the reduction
of observations.

In the present paper the author wants to study this problem in order to reduce the observations of
satellites of moderate size. The analytical expressions for the perturbations of the first order are easily
obtained; however, the two limits of integration are derived by numerical methods.

lAstronomer, Satellite Tracking Program, Smithsonian Astrophysical Observatory.

-25-



Disturbing Functions

The equations of variations to be solved are the following:

da __ 2nd3 . P
e ﬁ F{S(v) sinv + T(v) r—}’
-g—f—-_— na?Vi - e2 F [S(v) sinv + T(v){cosv + %(1 - %)H’

siniig= 2 WF&sinL, (1)
V- e2
‘z—f“= —cos 19 4 ng2 VL - e ES(V) cos v + T(v) (1 + %)sin{],
dt e

M _ 2 LYY (-7 aa
q =0 - W FS(V -Vl -e (dt+°°”dt)’

where the conventional notations are used for the orbital elements,

L=v+W,

p=a(l - e?;
n2a3FS(v), nzaaFT(v), and n2a3F W are three components of the disturbing force due to the solar
radiation pressure in the direction of the radius vector of the satellite, in the direction perpendicular

to it in the orbital plane, and in the normal to the orbital plane; and F is a product of the mass area
ratio, solar radiation pressure, and a reciprocal of GM.

To derive the expressions of S(v), T(v), and W, we make the following assumptions:

1) The distance of the sun and the satellite is infinite; that is, the parallax of the sun is
negligible.

2) The solar flux is constant along the orbit of the satellite if there is no shadow.
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3) There is no re-radiation from the surface of the earth.

Then the expressions are the following:

i €
S(v) = -coszlz-coszicos()\. -L-8)

- sin z‘zsinzecos(x + Q-1

-%sinisin e{cos()\. - L) - cos(-Ay - L)} (2)

2i
- sin cos cosn-)\ -L
3 2 ( » )

2i .. 2€
- cos lz-sm _Ecos(-)\.-l.-fl),

- 2 2
W = sin i cos -gsin(x. - ) - sinisin izsin(x. +Q)

-cosisine:inke,

where A is the longitude of the sun, and € is the obliquity. The expression of T(v) is obtained if
cos in S(v) is replaced by sin except for the trigonometrical terms with an argument i, €, i/2, or
€/e.

Solutions

There is a very important difference between the solar radiation force and the gravitationa! force.
The solar radiation force is sometimes a discontinuous function of time because when the satellite enters
the shadow, its motion is free from this effect.

Suppose that the satellite exits from the shadow at a point where the corresponding eccentric
anomaly of the satellite is Ey, and enters the shadow at Ey. H the force is continuous, the integral of
the short-periodic effect can be neglected. However, for this case there is a possibility that this effect
will be cumulative to a certain amount during a long interval of time. Therefore, the short-penod:c
terms must be kept in the solutions.

By use of the eccentric anomaly E as the independent variable, the perturbations of the first
order after one revolution can be derived in closed forms as follows:
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E
2
8a = za31=|,(s cosE+TW - e?sin E)l ,
E
1
Se = a®FV1 - ezﬂis\h - e2 cos 2E
+ T(-2e sin E + %sin ZE,)I

+% STdE],

Bi = a°F 7]%_—?-[“1 + ez) sinE - %sin ZE}cos w
E
+\/1 - e?(cosE -i—cos 2E) sincn' 2
Ey
- -2-e SWcosw.dE] ,
sin i 8Q = aF \T'LE[I{@ + Y sink - $sin ZE}sina) (3)
1 -e

w

,/ EZ

- VI - e2 (cosE --:-cosZE) coswl
E
1

-3 ‘(Wsinwdi]

8w = -cosi BQ+ a%F [lS(e sinE + —sm 2E)

[ 2 E
+ TV1 -ez(ecosE-i-cosZE)

3 (sl
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m
5M=_%S %‘lm-\/l-ez&b-dl-ezcosiﬁﬂ
0

- ZaZFUS{(I + ez) sinE - %sin ZE}

E
- TVY1 - e2(cosE - %cos ZE)' 2
E
1

- %ej SdEJ ,

where the limits of integration are E, and E, unless other values are written; § and T are the expressions
of S(v) and T(v), in which L is replaced by W; that is,

s = S(0),

(4
T =TO).

If the satellite does not enter the shadow during one revolution, the terms depending explicitly on
E vanish, and in particular, 5a vanishes.

. In the expressions of Bw and §Q, indirect effects of the solar radiation pressure through @ and
1 must be considered as follows:

. . (5)

Shadow Equation

H the geocentric angular distance between the sun and the satellite be denoted by a, the shadow
boundary is expressed by the equation,

rsinag = ag, (6)
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where ag is the radius of the earth and is assumed to be constant. The following relations hold among
r/a, E, S, T and a:

icosa= -S(cosE -~ e) - TWVI - e2sinE,

(7)

=1 -ecosE.
a

Ifw, Q, and x. are assumed to be constant during one revolution of the satellite, S, T and e can also
be regarded as constant; then E can be derived from equation (6).

However, as the equation is of the fourth degree with respect to sin E or cos E, it is very difficult
to get general analytical solutions except for a circular orbit, If the orbit is cxrcular, the terms of odd
powers of sin E or cos E disappear, and the equation becomes quadratic for cos? E or sin2 E. And it is
almost impossible to expand the solutions into power series of the eccentricity because of slow conver-
gency. Even if the series is convergent, it is possible that the equation has no real root even though the
equation has two real roots for the circular orbit, and vice versa.

Therefore, the author thinks that equation (7) must be solved numerically for every revolution.
There are four roots; however, under a condition that cos @ must be negative, the number reduces to
two, at most, If there is no real root, the satellite does not enter the shadow. And if there is only one
real root, the satellite touches the shadow at one point.

Numerical Examples

The author has devised a program to calculate these effects on the IBM-704 computer. This
program computes the inequalities of the orbital elements due to the solar radiation pressure, if the
approximate expressions of the orbital elements are known.

As an example, inequalities of the orbital elements for Satellite 1958 82 during the period
36526-36615 (Modified Julian Day; are plotted in Figure 1, This computation is based on an estimated
acceleration of 9.7 x 10-6 cm/sec2 (Musen, Bryant, and Bailie, 1960). The semimajor axis is ex-
pressed in earth equatorial radii, and the mean anomaly is in revolutions, The author (Kozai, 1961)
used earlier the same observations to derive geodetic constants; the effect of the solar radiation pressure
was partly taken into account in that reduction.

The perturbations for Satellite 1960 L1 have been roughly computed by this program, and have
been checked with observed values. As the eccentricity is small (order of 10~ ) , the change of the
argument of perigee is very rapid due to the solar radiation, For this case it is better to use

£ = esin , )

n=ecos,

instead of e and .

-30-




The following expressions are derived under an assumption that the satellite never enters the
shadow, and they are compared with observations in Figure 2:

E=¢'+ 0.00066

gl

0.04409 sin (91299 + 2 29651)

+ 0.03579 sin (Ag - Q) + 0.00188 sin (A, + Q)

- 0.00519 sin ), , , (8)
7 = 0.04409 cos (91299 + 22965t

+ 0.03373 cos (Ay ~ R) - 0.00200 cos (Ag +£2)

- 0.00169 cos A, ,

where 0.00066 in £ appears because of the odd harmonic of the earth's potential, 0.04409 is the so-
called proper eccentricity, and other terms are due to the solar radiation pressure. The time t is
measured from 37171.0 (MJD) in days. The proper eccentricity and the phase angle 91299 are
determined from observations by the method of least squares. The acceleration is also determined
to be (4.470 + 0.024) x 1073, '

Although the satellite entered the shadow after 37171 (MJD), the above expressions can follow
the actual variations quite well,
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Errata for SAO Special Report No. 53

The first equation on page 2 should read
. S— (2 - 2 sin® i), and
2 242 2
a (1 - &)

Line 15 on page 9 should read
n
2

Lines 10 through 12 on page 11 should read

convenient to print = instead of n in the results of SAO mean elements.

a
given. In figures 5 and 10, the curve for ¢ = 5%7 siny® glves the
correction needed to derive true altitude z = q - ay + ¢, of the

perigee over the international ellipsoild, vhere CR is earth's
equatorial radius and

Column headings on pages 13 through 19 and pages 25 through 31 should read

(MED) o Q& 1 e M 1n =n'/z2 @ N D g
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NOTICE

This series of Special Reports was instituted under the
supervision of Dr. F. L. Whipple, Director of the Astrophysical
Observatory of the Smithsonian Institution, shortly after the
launching of the first artificial earth satellite on October U,
1957. Contributions come from the Staff of the Observatory.
First issued to ensure the immediete dissemination of data for
satellite tracking, the Reports have continued to provide a
rapid distribution of catalogues of satellite observations,
orbital information, and preliminary results of data analyses
prior to formal publication in the appropriate Journeals.

Edited and produced under the supervision of Mrs. L. G.
Boyd and Mr. E. N. Hayes, the Reports are indexed by the Science
and Technology Division of the Library of Congress, and are
regularly distributed to all institutions participating in the
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request them from the Administrative Officer, Technical Infor-
mation, Smithsonian Astrophysical Observatory, Cambridge 38,
Massachusetts.
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